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1. Introduction

Meniscal injuries are the most common of traumatic knee injuries. Once damaged, meniscal tissue rarely 
regains normal structural integrity and mechanical strength. Surgical repair of meniscal tears cannot 
reliably prevent the degenerative changes that occur after injury. As a result, meniscal injuries are a 
common underlying cause of post-traumatic osteoarthritis. This is particularly striking in young, healthy 
individuals such as military personnel, where meniscal injury is often associated with long-term disability 
and knee replacement surgery. This proposal focuses on identifying meniscal stem/progenitor cells 
(MSPC) in the adult meniscus, developing a molecular profile of these cells, and examining the 
contribution MSPC provide to repair after meniscal injury. Information gathered from these studies will 
be useful for developing new treatments for acute meniscal injuries, lessening the need for joint 
replacement and reducing long-term disability in active adults.  

2. Keywords

meniscus, meniscal cells, stem cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 

3. Overall Project Summary

Specific Aim 1. 

Task 3: Characterize meniscal cells 

Subtask (3a) Stem cell-like cell characteristics of MSPCs will be assessed using flow cytometry using 

the following markers: Sca1, CD45, CD31, CD34 CD90.2, Flk-1, CD44, and CD146. All flow cytometry 

analysis was performed at the Harvard Stem Cell Core facility. 

For flow cytometry analysis, the mouse meniscus explant culture protocol detailed in our 

previous progress report was used. From a single 8 wk old mouse, 1.275-2.7 x105 meniscus cells (P0) 

were obtained after 15-20 days in culture. These cells were passaged into a new 10cm dish and grown to 

90-100% confluence. This yielded enough P1 cells (1-2 x 106) cells for flow cytometry analysis. For each 

stem cell marker, we used 0.5 x 106 cells and ran two flow cytometry samples per animal. For staining, 

each sample was resuspended in 100μl of flow cytometry buffer and kept on ice to preserve viability and 

prevent antibody capping. The Fc-Block was added to each tube at the recommended concentration for 

cell number/density and incubated for 5 mins. The stem cell marker antibody was then added at different 

dilutions and incubated on ice for 30 min. These cells were washed 3 times, resuspended in 400μl of flow 

cytometry buffer and the samples were kept on ice protected from light until analysis. Using a series of 

stem cell marker antibody concentrations, the saturation point was found for each marker (Sca1 – 2µg/ml; 

CD45 5µg/ml; CD90.2 2.5 µg/ml; CD44 5 µg/ml) and this was used in subsequent experiments. The 
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MSPCs were 97.3 % positive for the mesenchymal stromal cell marker CD44, 87.8% positive for the 

stem cell marker, stem cell antigen-1 (Sca1), and 54% positive for CD90.2, a surface marker for 

fibroblasts. Only 2.3% of these cells expressed CD45, a leukocyte/hematopoietic cell marker. This flow 

cytometry profile was similar to what was seen for human MSPCs cultured and analyzed in a similar 

manner and suggests these cells have characteristics of mesenchymal stem cells. 

Figure 1. Flow cytometry analysis of expression of cell surface markers related to stem cells. 

Subtask (3b) Clonogenicity of the population will be determined by examining the ability of single cells 

to form colonies. Colonies will be compared for frequency and size.   

For colony forming assays, meniscus cells (P1) from 8wk old mice were seeded a density of 

1000/25cm2 flask and 2000/25cm2 flask. MSPCs were cultured in regular growth medium for 12 days and 

stained with methyl violet (0.5%). Only colonies containing more than 50 cells were counted. A small 

population (2-3%) of meniscus derived cells formed adherent colonies similar to what was reported for 

tendon progenitor stem cells. These colonies were varied in size and morphology reflecting the inherent 

heterogeneous nature of meniscal tissue. 

Figure 2. The colony forming efficiency of MSPCs. 

54% 
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Subtask (3d) Multipotentiality of the MSPCs will be evaluated by placing single cells in adipogenic, 

osteogenic, and chondrogenic media for 21 days, and then staining colonies with oil red O (adipogenesis), 

Alcian blue (chondrogenesis) and alkaline phosphatase (osteogenesis).  

To evaluate the multipotentiality of MSPCs, 2 methods were tested using menisci from 8wk old 

mice knees. First, MSPCs were seeded at colony forming densities (1000/25cm2 flask and 2000/25cm2 

flask) and the growth medium was changed to differentiation media (adipogenic, osteogenic, or 

chondrogenic) on the second day. The cells were then cultured for 12 days and stained with oil red O 

(adipogenesis), Alcian blue (chondrogenesis) and alkaline phosphatase (osteogenesis). Using this 

protocol, only a few colonies stained positive for oil red O and did not stain for the other lineages. For the 

second method, MSPCs were seeded at colony forming densities (1000/25cm2 flask and 2000/25cm2 

flask) and cultured in regular growth medium for 12 days until colonies formed. Then, the growth 

medium was changed to differentiation media and the cells were cultured for another 7 days and stained 

for adipogenesis, chondrogenesis, osteogenesis. Using this protocol, colonies were able to differentiate 

into fat, cartilage and bone suggesting that the MSPCs are multipotential.  

Subtask (3e) RNA will be collected from parallel cultures for measurement of meniscus signature genes, 

stem cell markers as well as markers that identify bone, cartilage, tendon and fat using Nanostring 

technology. 

RNA was isolated from MSPCs (P1) grown to confluence for 7 days in control media from 8wk, 

24wk and 52wk old mouse meniscal explants. Real time PCR was used to analyze gene expression for 

cells from all time points. 
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qPCR 

analysis revealed that MSPCs from mice of all ages were positive for the mesenchymal stem cell markers 

CD29 and CD90/Thy1 with a peak of CD29 at 24wk and CD90 at 52wks. The MSPCs expressed robust 

levels of the meniscus signature gene Lox, an enzyme responsible for collagen cross-links in the 

musculoskeletal system. In addition, cells from young and aged mice expressed relatively steady levels of 

biglycan and Collagen type I, but COMP (Cartilage Oligomeric Matrix Protein) levels appeared to 

decrease at 6 months. This pattern of gene expression in MSPCs of all ages shows a mixed population of 

cells that reflects the fibro-cartilaginous composition of the adult meniscus. Our data suggest that there is 

not a significant difference in the gene expression profiles of MSPCs from 8wk, 24wk and 52wk old 

mice. 
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Figure 3. Real time PCR analysis of gene expression in MSPCs from 8wk, 24wk and 52wk mice 
meniscal explants.  
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Specific Aim2. 

Task 5: Assess functional changes in meniscus due to addition of MSPC.  

Functional changes in meniscus due to addition of MSPC will be measured using AFM-N at the 8 wk 

time point. For each sample, nanoindentation will be performed in different circumferential locations at 

0.316-10um/s AFM z-piezo displacement rates and total indentation depth up to ~200nm (1.5uN force). 

Using a mouse model already established in our lab that has defects in meniscal maturation 

(BMP2-Gdf5 cKO), we evaluated the capacity of AFM-N (Atomic Force Microscopy with 

Nanoindentation) to reproducibly identify changes in the meniscus from 8-10wk old mice. AFM-N was 

able to detect significant changes in menisci from control and trangenic mice and will be a valuable tool 

for assessing the biomechanical changes in the menisci due to the addition of MSPCs in wild type and 

injured mice knees. 

Figure 4. Analysis of biomechanical properties of menisci using AFM-N.  
Menisci from BMP2-Gdf5 conditional knock out mice are weaker with a significantly reduced effective 
indentation modulus when compared to controls. 

Specific Aim 3. 

Task 3: Production of meniscus tear.  

One week after injection of genetically labeled primary meniscal cells, a surgical tear will be made in the 

anterior horn of the medial meniscus using an open knee protocol. 

We performed pilot studies on knee joints from mice sacrificed for other experiments to practice 

the meniscus injury model. For surgical tear of medial meniscus, the joint capsule immediately medial to 

the patellar tendon was incised and opened with a #15 blade. Without cutting the ligaments, the medial 

meniscus was identified. Using a 30G needle, trephination of the front of the meniscal body was 
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performed to make a small surgical tear. Once the injury of the meniscus was made, the knees were fixed 

and processed for histological analysis. 

Figure 5. Histological analysis of surgical tears of medial meniscus. Sections of meniscus were stained with 
Hematoxylin and Eosin. Arrows indicate tear. F=Femur; T=Tibia; M=Meniscus. 

Using a 30G needle we were able to make a small, discrete injury to the inner portion of the medial 
meniscus. With continued practice, we are confident we can reproducibly make this tear and use this as 
our meniscus injury model for injection of MSPCs. 

4. Key Research Accomplishments

Nothing to Report. 

5. Conclusion

Nothing to Report. 

6. Publications, Abstracts, and Presentations

Li Q, Doyran B, Gamer L, Lu X, Qin L, Ortiz C, Grodzinsky A, Rosen V, Han L.   Biomechanical 
properties of murine meniscus surface via AFM-based nanoindentation. J Biomech. 2015; 48:1364-1370; 
PMID: 25817332. 

7. Inventions, Patents and Licenses

Nothing to Report. 
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http://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/?term=Qin%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25817332
http://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/?term=Ortiz%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25817332
http://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/?term=Grodzinsky%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=25817332
http://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/?term=Rosen%20V%5BAuthor%5D&cauthor=true&cauthor_uid=25817332
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http://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/25817332
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8. Reportable Outcomes

Nothing to Report. 

9. Other Achievements

This funding has resulted in post-doctoral training of Rui Rui Shi, MD, PhD. 

10. References

None. 

11. Appendices
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a b s t r a c t

This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force
microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci
from 6- to 24-week old male C57BL/6 mice using microspherical tips (RtipE5 mm) in PBS. A unique,
linear correlation between indentation depth, D, and response force, F, was found on menisci from all
age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the
collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction.
The indentation resistance was calculated as both the effective modulus, Eind, via the isotropic Hertz
model, and the effective stiffness, Sind ¼ dF/dD. Values of Sind and Eind were found to depend on
indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary
with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus
surface (e.g., 6.170.8 MPa for 12 weeks of age, mean7SEM, n¼13) was found to be significantly higher
than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.470.1 MPa,
n¼6). In summary, these results provided the first direct mechanical knowledge of murine knee
meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further
probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Knee meniscus is a hydrated fibrocartilage tissue with an
extracellular matrix (ECM) mainly composed of circumferentially
aligned, type I-dominated collagen fibers (E20–25 wet wt%) and
small amounts of proteoglycans (o5 wet wt%) (Aspden et al., 1985;
Herwig et al., 1984). In human menisci, the circumferential fibers
are wrapped within the superficial layer made of radially aligned
fibers, which is covered by a thin mesh of transversely aligned
fibrils on the surface (Petersen and Tillmann, 1998). Within the
interior of the meniscus, circumferential fibers are further inter-
digitated by “radial-tie” fibers throughout (Skaggs et al., 1994). This

hierarchically structured, heterogeneous ECM provides meniscus
with its biomechanical functions paramount to joint motion,
including load distribution (Walker and Erkman, 1975), shock
absorption (Voloshin and Wosk, 1983) and lubrication (Fithian
et al., 1990). During the progression of osteoarthritis (OA), meniscus
often undergoes maceration, tear or even total damage that leads to
the loss of its biomechanical functions (Katsuragawa et al., 2010).
These symptoms contribute to the abnormal joint loading, and
further accelerate the degeneration of cartilage (Englund, 2008;
Hunter et al., 2006; Klompmaker et al., 1992). Knowledge about the
structure-mechanics relationships of meniscus ECM is thus critical
for understanding joint function, documenting disease progression
and designing repair strategies (Makris et al., 2011).

In the past decades, the mechanical properties of menisci in
human and animals have been extensively explored via both experi-
mental (Baro et al., 2012; Fithian et al., 1990; Proctor et al., 1989;
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Sweigart and Athanasiou, 2005) and theoretical (Spilker et al., 1992)
approaches. These studies have established a knowledge base of
meniscus biomechanics across species. However, biomechanical
knowledge of meniscus in one critical species, mouse, is lacking.
Murine models offer a unique platform to study synovial joint
development and OA pathology due to its short lifespan, low cost
of maintenance and availability for genetic modification (Ameye and
Young, 2006; Fang and Beier, 2014). Limited by its relatively small
tissue size, conventional mechanical tests are not applicable to
evaluate the structure or mechanical properties of murine menisci.
Without this understanding, it is challenging to study joint develop-
ment or OA degradation in murine models from the perspective of
meniscus biomechanics.

The objective of this study is to define the biomechanical
properties of murine meniscus surface. Using atomic force micro-
scopy (AFM)-based nanoindentation, we quantified the indenta-
tion responses of the meniscus surface from normal, male C57BL/6
mice. This study revealed the impacts of indentation rate, anato-
mical location and age on the mechanical properties. The indenta-
tion responses were interpreted in the context of meniscus surface
collagen fibril structure quantified on 12-week old tissues. Results
were compared with menisci from other species, as well as murine
articular cartilage to highlight the unique properties of murine
meniscus. We expect the knowledge learned from the evaluation
of healthy murine meniscus to serve as a benchmark for future
investigations of OA-associated mechanical symptoms of meniscus
surface in various transgenic or surgery-induced murine models.

2. Methods

2.1. Sample preparation

Hind knee menisci were harvested from male C57BL/6 mice at 6, 8, 12 and 24
weeks of ages (The Jackson Laboratory, Bar Harbor, ME) via release from the
meniscus-tibial tendons. Freshly dissected samples were maintained in phosphate
buffered saline (PBS, pH¼7.4) with protease inhibitors (Pierce Protease Inhibitor
Tablets 88266, Thermo Fisher Scientific, Rockford, IL) at 4 1C for less than 24 h prior
to mechanical tests. For each mouse, we tested the proximal side of both lateral and
medial menisci. For the same mouse, we did not observe statistical differences in
the mechanical properties of tissues from left versus right legs. We therefore tested
either left or right knee menisci from one mouse, or pooled the data on the menisci
of the same mouse.

Histology images were taken to show the overall morphology and location of
ossification. Right knee joints from each of the 8- and 24-week old mice were
harvested, decalcified, and embedded in paraffin. Serial 5-mm-thick sagittal sections
were cut across the joint medial compartment. Safranin-O/FastGreen staining
images showed that ossification at the anterior and posterior horns increased with
age, with larger ossicles at the anterior end (Fig. 1a). This observation was
consistent with previous studies (Pedersen, 1949). However, the �50–100 mm
thick central region for nanoindentation test was not ossified up to 24 weeks of age.

2.2. Atomic force microscopy (AFM)-based nanoindentation

Each meniscus was mounted on a stainless steel AFM disk via cyanoacrylate
glue (Pelco Pro C300, Ted Pella, Inc.). Care was taken to ensure that the glue did not
cover or infiltrate through the o1 mm thick meniscus tissue, as later on confirmed
by scanning electron microscope (SEM) images. For each meniscus, AFM-based
nanoindentation was performed on the surface of the central, non-ossified region
using a microspherical probe tip and a Dimension Icon AFM (BrukerNano, Santa
Barbra, CA) (Fig. 1b). The spherical tip was prepared by attaching a borosilicate
colloid (Rtip¼5.370.4 mm, mean7STD on n¼120 colloids measured via optical
microscope, Polysciences, Warrington, PA) onto the tipless cantilever (nominal
spring constant kE7.4 N/m, AIO-TL tip C, NanoAndMore, Lady's Island, SC) using
the M-Bond 610 epoxy (Polysciences) under the Dimension Icon AFM. For each
meniscus, at least 10 different locations were tested up to an indentation depth of
E0.3 mm at 10 mm/s rates. In addition, to study the rate-dependent mechanical
properties of murine meniscus, for 8-week old murine menisci, indentation was
repeated with 0.316–10 mm/s rates at each location. Each nanoindentation was
found to result in negligible irreversible plastic deformation of the tissue, as
suggested by the high repeatability of indentation curves at the same location and
same indentation rate. Furthermore, to directly compare to the mechanical proper-
ties of murine articular cartilage, nanoindentation was also performed on the right

hind knee medial condyle articular cartilage of 12-week old male mice at 10 mm/s
indentation depth rate, following previously established procedures (Batista et al.,
2014). During all the indentation measurements, meniscus and cartilage tissues
were immersed in 0.15 M PBS (pH¼7.4) with protease inhibitors (Pierce) to
maintain the physiological-like fluid environment.

2.3. Indentation data analysis

Each indentation force versus depth, F–D, curve was analyzed by two methods
(Fig. 1c). First, following our previous established procedure on articular cartilage
(Han et al., 2011), we calculated the effective indentation modulus, Eind, at each rate
by fitting the entire portion of each loading F–D curve with Hertz model via least
squares linear regression (LSLR)

F ¼ 4
3

Eind
1�ν2
� �R1=2

tip D3=2 ð1Þ

where Rtip is the tip radius (E5 mm), and ν is the Poisson's ratio (E0 for meniscus).
The choice of Poisson's ratio was based on the estimate from tissue-level studies on
other species (Sweigart et al., 2004). However, varying ν from 0–0.5 only yielded
E25% difference in calculated Eind, and did not affect the conclusions of this study.

Secondly, for each F–D curve, we calculated the effective indentation stiffness,
Sind, as the slope of the entire portion of the loading curve via LSLR

Sind ¼
dF
dD

; ð2Þ

The coefficient of determination, R2, was used to compare the goodness-of-fit
by these two methods. For all the F–D curves, the tip-sample adhesion forces were
found to be negligible compared to the indentation forces (�1 mN, Fig. 1c).

2.4. Scanning electron microscopy (SEM) and tapping mode AFM imaging

To qualitatively interpret the biomechanical properties of murine meniscus in
the context of its matrix collagen structure, serial enzymatic digestions were
carried out to enable direct visualization of collagen fibrils on the surface of 12-
week old murine menisci. Immediately after nanoindentation, menisci was
incubated in 0.1 mg/mL bovine pancreatic trypsin (Sigma-Aldrich, St. Louis, MO)
in PBS (pH¼7.4) at 37 1C for 24 h to remove proteoglycans, as previously described
(Rojas et al., 2014). Tissues were then incubated in 0.4 U/mL hyaluronidase (Sigma-
Aldrich) in PBS with 10 mM sodium acetate (pH¼6.0) at 37 1C for 24 h to remove
hyaluronan (Vanden Berg-Foels et al., 2012). After the digestion, samples were fixed
with Karnovsky's fixative (Electron Microscopy Sciences, Hatfield, PA) for 3 h at
room temperature, and then rinsed thoroughly with deionized water to remove
chemical residuals. The samples were first dehydrated in a series of graded
ethanol–water mixtures (ethanol volume ratio: 25%, 50%, 75%, 80% and 100%),
each for two 10 min immersions. They were then immersed in a series of graded
mixtures of hexamethyldisilazane (HMDS) (Sigma-Aldrich) and ethanol (HMDS
volume ratio: 25%, 50%, 75% and 100%), each for two 10 min immersions (Bray et al.,
1993). As surface tension was minimized in HMDS, the samples were dried in air
overnight to retain the 3D architecture of the collagen structure and stored in a
desiccator prior to imaging.

For tapping mode AFM imaging, a nanosized, pyramidal AFM tip (nominal
RtipE10 nm, nominal kE42 N/m, NCHV, BrukerNano) was used to visualize the
meniscus surface collagen fibril architecture (n¼3 medial menisci at 12 weeks of
age) in ambient conditions using the Dimension Icon AFM. For SEM imaging,
additional samples (n¼3 medial menisci at 12 weeks of age) were thermally coated
with 10 nm platinum, and imaged immediately via SEM (Supra 50vp, Zeiss,
Peabody, MA). For both SEM and AFM images, the distributions of collagen
diameter and alignment angle, θ, with respect to the circumferential direction
were manually measured via ImageJ.

2.5. Statistical analysis

Non-parametric statistical tests were used to avoid the assumption of normal
distribution. Mann-Whitney U test was performed on the average Sind, or Eind, of
menisci from each mouse to detect whether Sind or Eind vary significantly between
the lateral versus medial compartments, or vary between meniscus and cartilage.
Kruskal-Wallis test was performed to detect the variations with respect to
indentation regions (inner, middle and outer), and mouse age. Friedman test was
performed to examine the rate dependence of Eind or Sind. To compare the linear fit
versus Hertz model, Wilcoxon signed-rank test was performed on the average
coefficient of determination, R2, obtained on each mouse with both fits. Except for
those presented in Fig. 2b, data obtained on one mouse were pooled, as no
significant differences were found between left versus right meniscus, or between
medial versus lateral compartments. In all the tests, a p-value of less than 0.05 was
taken as statistically significant.
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3. Results

For all menisci, most indents yielded a unique, non-Hertzian
indentation response. The F–D curves were found to behave more
linearly at all tested rates, rather than the typical F–D3/2 Hertzian
pattern (Fig. 1c). For each F–D curve, Sind was calculated to provide

a more precise description of the F–D dependence. The Hertz
model-based Eind was also calculated to enable direct comparison
with the moduli of menisci in other species, and with those of
murine articular cartilage.

We did not find significant heterogeneity across different
anatomical locations. On the proximal side of each meniscus, Sind
was found not to vary significantly across the inner, middle and
outer regions (Fig. 2a). We therefore pooled the data obtained at
all three regions from each meniscus. In addition, absence of
significance in Sind was found between the lateral and medial
menisci (Fig. 2b). Similar to other soft tissues, significant rate
dependence was detected here, where increasing indentation rate
from 0.316 to 10 mm/s significantly increased Sind. Furthermore, the
linear F–D behaviors were persistent at all the tested rates (Fig. 3).

Within the tested murine age from 6 to 24 weeks, we did not
find significant trend in Sind (or Eind). Sind was found to be
9.671.0 N/m, 7.871.0 N/m, 7.370.9 N/m and 7.571.0 N/m at 6,
8, 12 and 24 weeks of age, respectively (Fig. 4a). When the Hertz
model was applied, Eind was 9.271.6 MPa, 6.771.1 MPa,
6.170.8 MPa and 7.071.2 MPa, at 6, 8, 12 and 24 weeks of age,
respectively (Fig. 4b). In all tested ages, the coefficient of determi-
nation in LSLR, R2, was significantly higher when using the linear
fit than using the Hertz model (Fig. 4c). When compared to its
direct contact counterpart, the articular cartilage surface, the
murine meniscus surface appeared much stiffer. As shown in
Fig. 5, nanoindentation on 12-week old murine cartilage yielded
Eind of 1.470.1 MPa, E4� lower than the moduli of meniscus at
the same age.
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Whitney U test). All the values were measured at 10 mm/s indentation depth rate.
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Results from tapping mode AFM and SEM imaging on 12-week
old meniscus surfaces were consistent (p40.05 via Mann-
Whitney test), and were therefore pooled for analysis. The images
yielded unique structural features of murine meniscus surface.
Unlike the human tissues, we found the majority of surface
collagen fibrils are aligned nearly along the circumferential direc-
tion as fibril bundles (Fig. 6a–c). The diameters of collagen fibrils
were found to be 49.879.5 nm (mean7STD of 325 fibrils on the
medial menisci of six 12-week old mice, 232 from SEM and 93
from AFM, Fig. 6d), similar to those of C57BL/6 wild-type murine
articular cartilage surface (Batista et al., 2014). In addition, the
absolute values of the angle of each fibril alignment with respect
to the circumferential direction, θ, were found to be 21.9720.71
(429 fibrils on six 12-week old mice, 324 from SEM and 105 from
AFM, Fig. 6e). The median of θ was 15.01. As shown by the
distribution of θ, in addition the dominance of circumferentially
aligned fibril bundles, there also existed transversely aligned fibrils
interdigitating throughout these circumferential fibril bundles
(e.g., white arrowheads in Fig. 6b and c), with a marginal prefer-
ential alignment along the radial direction (e.g., 3.7 7 0.9% of fibrils
at 701rθo801, Fig. 6e).

4. Discussion

4.1. Non-Hertzian indentation responses of murine meniscus surface

The linear F–D indentation response of murine meniscus
surface is reported here for the first time (Figs. 1c, 3 and 5). This
non-Hertzian behavior likely originates from the densely packed,
highly anisotropic collagen fibril structure of the meniscus surface

(Fig. 6). As revealed by SEM and AFM imaging on the 12-week old
menisci, the surface is dominated by densely packed, circumferen-
tially aligned fibril bundles, interdigitated by sparsely distributed,
transversely aligned fibrils (white arrowheads in Fig. 6b and c). This
structure leads to substantial tension–compression asymmetry.
When nanoindentation was performed normal to the surface, forces
could mainly originate from the fibril tension resistance. In such
highly aligned, densely packed fibril bundles, when fibril stretching,
rather than uncrimping/realignment, dominates its deformation,
stresses can travel along the fibrils much further beyond the local
contact region (Wang et al., 2014). In this experiment, stresses likely
transmit along the fibril bundles to a distance orders of magnitude
(⪢10 mm) greater than the tip-sample contact radius (E2.2 mm at
0.5 mm indentation depth). As a result, stresses were not localized,
and indentation forces may not directly scale with the tip-sample
contact area, as would be predicted by the Hertz model.

Another possible origin of this non-Hertzian response is the
time-dependent poroviscoelasticity. It has been shown that when
the indentation time is comparable with the characteristic viscoe-
lasticity time (tindent/τvisco�1), F–D curves measured by a spherical
tip follows a linear pattern (Sakai, 2002). However, we observed
the linear F–D curves at all indentation rates (0.316–10 mm/s,
Fig. 3a), rather than at one particular rate. While the rate
dependent indentation behavior was only reported for 8-week
old menisci (Fig. 3), this linear F–D relationship was found to
persist at other ages (6–24 weeks) in the range of 0.1–10 mm/s
indentation rates as well (data not shown). Thus, it is less likely
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Fig. 4. Mechanical properties of murine meniscus surface at different ages. (a, b) Effective indentation stiffness, Sind (a), and modulus, Eind (b), of the proximal side meniscus
surface at 6 weeks (n¼5), 8 weeks (n¼10), 12 weeks (n¼13) and 24 weeks (n¼5) of ages showed no significant age dependence (p40.05 via Kruskal-Wallis test).
(c) Comparison of coefficient of determination, R2, calculated via the fits of Sind and Eind. The linear fit yields significantly higher R2 than the Hertz model (po0.0001 via
Wilcoxon signed rank test). For all three panels, data shown are mean7SEM of the average values measured on meniscus at the given age cohort at 10 mm/s indentation
depth rate.
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that poroviscoelasticity is the dominating factor. We hypothesize
that the tension resistance of meniscus surface collagen fibrils is
the main factor of this non-Hertzian F–D response, while poro-
viscoelastic time-dependence may play a minor role. Current
studies are aimed at quantitatively investigating the origins of
this non-Hertzian response by combining AFM imaging, AFM-
nanoindentation at different length scales and fibril-reinforce
finite element models (Soulhat et al., 1999) to quantitatively reveal
the nanostructure-nanomechanics relationships of murine menis-
cus and the associated age-dependence.

4.2. Absence of anatomical location dependence

We did not observe significant variations in Sind (or Eind) across
the inner to outer regions on each meniscus (Fig. 2a), or between
the lateral versus medial menisci (Fig. 2b). This lack of mechanical
heterogeneity may be associated with the unique biomechanical
functions of the meniscus surface. These functions include load
distribution and transmission with cartilage, and the maintenance
of meniscus tissue structural integrity (Andriacchi et al., 2004;
Walker and Erkman, 1975). A structurally more homogeneous
surface layer could be more effective in distributing stress to the
interior and may reduce the risk of meniscus tear. This phenom-
enon of homogeneity is consistent with previous studies on the
instantaneous modulus of skeletally mature porcine meniscus
measured by AFM-nanoindentation (Sanchez-Adams et al., 2013),
and local tissue strain distribution of young bovine menisci via
depth-dependent strain monitoring (Lai and Levenston, 2010).
Interestingly, this relative homogeneity of the surface is in high
contrast to the salient heterogeneity of the interior meniscus.
Different regions in the meniscus interior are known to have
distinctive mechanical functions. As shown previously for porcine
menisci, the outer (red) zone that mainly sustains circumferential
tensile stresses is mechanically distinct from the inner (white)

zone (Sanchez-Adams et al., 2013) that mostly undergoes com-
pression (Makris et al., 2011).

4.3. Absence of age-dependence

We also did not observe significant age-dependence in Sind or
Eind from young, immature (6 weeks) to mature (24 weeks) mice
(Fig. 4). This lack of age-dependence could be attributed to the
dominance of type I collagen-based fibrils and negligible concen-
tration of proteoglycan content on meniscus surface (Moyer et al.,
2013), as the turnover of collagen is known to be markedly longer
than other matrix constituents. For example, in human femoral
head cartilage, the metabolic half-life of type II-dominated col-
lagen is E117 years (Verzijl et al., 2000), while that of aggrecan is
E3.4 years (Maroudas et al., 1998). In human skin, the half-life of
type I-dominated collagen is E15 years (Verzijl et al., 2000). The
half-life of murine meniscus collagen has not been quantified.
However, it is reasonable to expect a collagen network half-life
comparable to the life expectancy of mice, or at least, to the age
span (6 to 24 weeks) of this study. It is therefore likely that
meniscus structure and mechanics exhibit much less age-
dependent variations within the tested age than the aggrecan-
rich cartilage. Interestingly, while we did not find significant age
dependence in meniscus (Fig. 4), the density and modulus of
cortical bone from the same C57BL/6 mouse strain was found to
significantly increase with age within 4 to 24 weeks of age.
However, this increase in modulus was marginal after 8 weeks
of age, and was highly correlated with increase in the degree of
mineralization (Somerville et al., 2004). For the central region of
meniscus, in the absence of mineralization, the temporal trend of
development and maturation could be different from that of
cortical bone. We believe that future studies targeted to younger
and older mice can further elucidate the mechanical implications
of meniscus, as well as its association with skeletal development
and aging.
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4.4. Comparison to meniscus of other species

Interestingly, the murine meniscus surface showed signifi-
cantly higher Eind than those of other species measured via nano-
to microindentations. In this study, Eind of 12-week old menisci
was 6.170.8 MPa (Fig. 3b). In comparison, for skeletally mature
porcine meniscus surface, AFM-based nanoindentation with an
RtipE2.5 mm spherical tip showed moduli in the range of
3677 kPa (reported as mean7SD, outer zone) to 60715 kPa
(inner zone) (Sanchez-Adams et al., 2013). For human meniscus
surface, instrumented microindentation with an RtipE150 mm
spherical tip showed steady state modulus of 1.6570.13 MPa for
57–70 years old tissues (Moyer et al., 2012). This markedly higher
Eind of murine meniscus is likely associated with their smaller
body weight than other species. Recently, a negative allometric
scaling was found between articular cartilage thickness and body
mass across many species, including mouse, human and others.
This relation was hypothesized to contribute to a decrease in
cartilage biomechanical properties as increasing body weight
(Malda et al., 2013). This hypothesis was supported by our
previous nanoindentation work on wild-type murine knee carti-
lage, where murine cartilage was found to be significantly stiffer
(Eind�1 MPa) (Batista et al., 2014) than cartilage of larger species,
including porcine (McLeod et al., 2013), bovine (Nia et al., 2011)
and human (Stolz et al., 2009) tissues (Eind�0.1 MPa). For menis-
cus, there has been no systematic study on the relationship
between body mass and tissue size across species. However, since
the thickness of meniscus is similar to articular cartilage in both
mouse (�50–100 mm in the central region, Fig. 1a) and human
(�2 mm; Wenger et al., 2013), it is likely that similar allometric
scaling law is also present. As supported by recent tissue-level
studies (Joshi et al., 1995; Sweigart et al., 2004), macroindentation
measurements found that the smaller lapine menisci had signifi-
cantly higher aggregate moduli than the larger human, porcine
and bovine tissues (Sweigart et al., 2004).

4.5. Comparison to murine articular cartilage

The moduli of murine meniscus surface were significantly
higher than its direct contact counterpart, the articular cartilage
(Eind¼1.470.1 MPa, Fig. 5b). In addition, as shown in this and
previous (Batista et al., 2014) studies, indentation of articular
cartilage resulted in typical Hertzian-like F–D curves (Fig. 5a).
The surface layer of articular cartilage is mostly composed of
transversely aligned, type II-dominated collagen fibrils, with
higher proteoglycan concentrations than meniscus (Xia et al.,
2008). The lower cartilage moduli are likely associated with the
less organized, less densely packed, or less pre-stretched collagen
fibril networks on the surface. In comparison to meniscus, the
presence of abundant proteoglycans in articular cartilage may also
contribute to the stress localization and higher degree of isotropy,
and thus, lead to more Hertzian-like indentation responses.

4.6. Implications for murine model-based osteoarthritis studies

Mechanical knowledge obtained in this study can be applied to
murine-based osteoarthritis studies. Recently, AFM-based nano-
mechanical tests on murine cartilage have become a valuable tool
for investigating the articular cartilage biomechanical function and
pathogenesis of OA (Batista et al., 2014; Nia et al., 2015; Stolz et al.,
2009; Willard et al., 2014). Successful execution of AFM-based
nanoindentation on murine cartilage demonstrated the potential
of using similar approaches to provide valuable insights into the
roles of meniscus in the development of OA. While OA is now
recognized as a whole-joint disease (Poole, 2012), understanding
of the function of meniscus and its interaction with articular

cartilage during OA progression is very limited. A biomechanical
focus on murine meniscus can thus provide a novel platform for
investigating individual mechanical changes of joint tissues that
occur and result in OA. For example, it is suggested that in articular
cartilage, OA initiates from superficial layer before propagating to
the interior (Saarakkala et al., 2010), while the propagation pattern
of OA in meniscus is unclear (Pauli et al., 2011). Based on the
knowledge of healthy, normal mice, future studies on the con-
comitant mechanical changes at the meniscus–cartilage contact
interfaces may be used as a novel biomarker for the detection and
evaluation of OA when combined with clinically relevant OA
models, such as the destabilization of the medial meniscus surgery
(Glasson et al., 2007).

5. Conclusions

In this study, we quantified the nanomechanical properties of
murine meniscus surface via AFM-based nanoindentation. A non-
Hertzian, linear F–D indentation response was detected on normal,
healthy murine meniscus surface at 6–24 weeks age. This behavior
is likely associated with the highly anisotropic, circumferential
collagen fibril bundle-dominated architecture. The indentation
modulus/stiffness showed negligible dependence on tested anato-
mical locations or mouse age. In addition, murine menisci were
found to be E4� stiffer than murine articular cartilage. To our
knowledge, this is the first study that focused on the mechanical
properties of murine meniscus. It is hoped that the knowledge
obtained here can lay the ground for future explorations of
meniscus developmental biology and OA pathology using trans-
genic or surgery-induced OA models.
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